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*5.

CHAPTER 2 TRANSVERSALITY AND INTERSECTION

EXERCISES

(For the e-Neighborhood Theorem) Show that any neighborhood U
of Yin RM contains some Y¢; moreover, if Y is compact, € may be taken
constant. [HINT: Find covering open sets U, = Y and €, > 0, such that
Us= = U. Let {6} be a subordinate partition of unity, and show that
€ = >, 0., works.]

Let Y be a compact submanifold of R¥, and let w € R*. Show that
there exists a (not necessarily unique) point y € Y closest to w, and
prove thatw — y € N (Y). [HINT: If ¢(¢) is a curve on Y with ¢(0) = y,
then the smooth function|w — ¢(¢) |> has a minimum at 0. Use Exercise
12, Chapter 1, Section 2.]

Use Exercise 2 to verify the geometric characterization of z: Y — Y,
for compact Y. Assume that 4: N(Y) — RM carries a neighborhood of
Y in N(Y) diffeomorphically onto Y, € constant. Prove thatif w € Y*,
then z(w) is the unique point of Y closest to w.

(General Position Lemma) Let X and Y be submanifolds of R¥. Show
that for almost every a € RY the translate X + a intersects Y trans-
versally.

Suppose that the compact submanifold X in Y intersects another sub-
manifold Z, but dim X 4 dim Z < dim Y. Prove that X may be pulled
away from Z by an arbitrarily small deformation: given € > O there
exists a deformation X, = i,(X) such that X, does not intersect Z and
|x —i;(x)| < eforall x € X. (Note: You need Exercise 11, Chapter 1,
Section 6. The point here is to make X, a manifold.)

Sharpen Exercise 5. Assume that Z is closed in Y and let U be any open
set in X containing Z N X. Show that the deformation X, may be cho-
sen to be constant outside of U (Figure 2-11).

— e e = ——

Figure 2-11
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Suppose that X is a submanifold of RY. Show that “almost every”
vector space V of any fixed dimension / in R" intersects X transversally.
[HINT: The set S = (R") consisting of all linearly independent /-tuples
of vectors in R" is open in R and the map R’ X S — R" defined by

is a submersion.]

Suppose that f: R” — R” is a smooth map, n > I, and let K < R” be
compact and € > 0. Show that there exists amap f': R* —> R” such that
df. is never zero, but | f — f'| < € on K. Prove that this result is false
for n = 1.[HINT: Let M(n) = {n X n matrices}, and show that the map
F:R" X M(n) —> M(n), defined by F(x, A) = df, -|- A, is a submer-
sion. Pick A4 so that F, /A {0}; where is n > 1 used?]

Let f: R¥* — R¥%, and, for each a € R¥, define

Prove that for almost all @ € R¥%, f, is a Morse function. [HINT: Con-
sider

Show that this is a submersion, hence /A {0}.]

Let X be an n — 1 dimensional submanifold of R”, a “hypersurface.”
A point in R” is called a focal point of X if it is a critical value of the
normal bundle map 4: N(X) — R*, h(x, v) = x + v. Locate the focal
points of the parabola y = x2 in R2. [Answer: You get a curve with a
cusp at (0, 4).]

Let X be a one-dimensional submanifold of R?, and let p € X. Choose
linear coordinates in R2 so that p is the origin, the x axis is the tangent
line to X at p, and the y axis is the normal line. Show that in a neighbor-
hood of p = 0, X is the graph of a function y = f(x) with f(0) = 0 and
f'(0) = 0. The quantity f"’(0) is called the curvature of X at p, denoted
x(p). Show that if x#(p) = 0 then X has a focal point along the normal
line at distance 1/x(p) from p. [HINT: Show that the normal space to X
at a point x near p is spanned by (—f'(x), 1). Now compute the normal
bundle map 4: N(X) — R2]
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CHAPTER 2 TRANSVERSALITY AND INTERSECTION

Let Z be a submanifold of Y, where Y — R, Define the normal bundle
to Z in Y to be the set N(Z;Y) ={(z,v):z€ Z,v e T,(Y)and v |
T,(Z)}. Prove that N(Z; Y) is a manifold with the same dimension as Y.
[HINT: Let g,,. .., g be independent functions in a neighborhood U
of zin R™, with

U=ZnNnU={g=0,...,g5=0}
and
YNU={g.,.=0,...,8=0

(Exercise 4, Chapter 1, Section 4). Show that the associated parametriza-
tion U X R! — N(Z; RM) as constructed in the text restricts to a para-
metrization U X R¥* — N(Z; Y).]

Consider S*~! as a submanifold of S* via the usual embedding mapping
(X1, ... Xe) — (x4, ..., Xz, 0). Show thatat p € S*~! the orthogonal
complement to T ,(S*~') in T (S*) is spanned by the vector (0, . . ., 0, 1).
Prove that N(S§*%~!; S¥) is diffeomorphic to S¥~! x R.

Prove that the map o:N(Z; Y) — Z, 6(z, v) = z, is a submersion.
What specifically is the preimage o~!(z), which we denote by N,(Z; Y)?

Show that the map z —~ (z,0) embeds Z as a submanifold of N(Z; Y).

Tubular Neighborhood Theorem. Prove that there exists a diffeomor-
phism from an open neighborhood of Z in N(Z; Y) onto an open neigh-
borhood of Z in Y. [HINT: Let Y<-=» Y be as in the e-Neighborhood
Theorem. Consider the map h: N(Z; Y) — RM, h(z,v) = z + v. Then
W = h-'(Y*¢)is an open neighborhood of Z in N(Z; Y). The sequence of

maps WL Y<Z. Yis the identity on Z, so use Exercise 14 of Chapter
1, Section 8.]

Let A be the diagonal in X' X X. Show that the orthogonal complement
to T, (A) in T, (X X X) is the collection of vectors {(v, —v):v €
T.(X)}. [See Exercise 10, Chapter 1, Section 2.]

Prove that the map T(X) — N(A; X X X), defined by sending (x, v) to
((x, x), (v, —v)), is a diffecomorphism. Use the Tubular Neighborhood
Theorem to conclude that there is a diffeomorphism of a neighborhood
of X in T(X) with a neighborhood of A in X X X, extending the usual
diffeomorphism X — A, x — (x, x).

Let Z be a submanifold of codimension k in Y. We say that the normal
bundle N(Z; Y) is trivial if there exists a diffeomorphism @ : N(Z; Y)
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— Z X RF¥ that restricts to a linear isomorphism N,(Z; Y) — {z} X R*
for each point z € Z. As a check on your grasp of the construction,
prove that N(Z; Y) is always locally trivial. That is, each point z € Z
has a neighborhood ¥V in Z such that N(V; Y) is trivial.

*20. Prove that N(Z; Y) is trivial if and only if there exists a set of k inde-

pendent global defining functions g,, . . ., g for Z on some set U in Y.
That is,

Z={yeU:g(y)=0,...,g5(y) =0}

[HINT: If N(Z; Y) is trivial, then there obviously exist global defining
functions for Z in N(Z; Y). Transfer these functions to an open set in Y
via the Tubular Neighborhood Theorem, Exercise 16. Conversely, if
there exists a submersion g: U — R* with g~1(0) = Z, check that, for
each z € Z, the transpose map dg’:R¥ — T,(Y) carries R* isomor-
phically onto the orthogonal complement of T,(Z) in T,(Y); thus
O 1':Z X R¥x— N(Z; Y) is defined by &~!(z, a) = (z, dg’a).]

84 Intersection Theory Mod 2

The previous section was technical and rather difficult. We now
hope to convince you that the effort was worth it. In this section we will use
the transversality lemma and the other results of Section 3 to develop a simple
intuitive invariant for intersecting manifolds, from which we will be able to
obtain many nice geometric consequences.

Two submanifolds X and Z inside Y have complementary dimension if
dim X +dimZ =dim Y. If X A Z, this dimension condition makes their
intersection X N Z a zero-dimensional manifold. (We are working now with-
out boundaries.) If we further assume that both X and Z are closed and that
at least one of them, say X, is compact, then X N Z must be a finite set of
points. Provisionally, we might refer to the number of points in X N Z as the
“intersection number” of X and Z, indicated by # (X N Z). See Figure 2-12.

How can we generalize this discussion to define the intersection number
of the compact X with an arbitrary closed Z of complementary dimension?

X VA #XNZ) =4

Figure 2-12



